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ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ 
ЗЕМНЫЕ СФЕРА И СФЕРОИД 

Сферическая модель Земля. Сфера и сфероид - две основные геометрические модели 
Земли в геодезии. Ранние определения размеров сферической Земли сводились к нахожде-
нию длины дуги меридиана, соответствующей разности широт в 10, и вычислению ее радиу-
са. Такие определения получили название градусных измерений. Размеры шара Земли 
указывал еще Аристотель (384-322 гг. до н. э.). Первое исторически известное определение 
радиуса земного шара выполнил Эратосфен (278-196 гг. до н. э.). Это были довольно грубые 
оценки. Сравнительно точные результаты получили арабы в период расцвета арабского госу-
дарства при халифе Аль-Мамуне (786 - 833гг.). В Месопотамии на широте 350 длина дуги 
меридиана в 10 получилась равной 111,8 км (погрешность менее 1%), а радиус земного шара 
— 6406 км. Великий ученый Средней Азии Бируни (973-1048) для длины дуги окружности в 
10 и ее радиуса получил соответственно 110,7 км и 6342 км (по современным данным для 
этих широт — 110,9 км и 6369 км). Бируни предложил новый метод определения радиуса 
Земли — путем измерения угла понижения горизонта с известной высоты над уровнем моря 
(рис. 3.1). 
В эпоху великих географических от-

крытий интерес к фигуре Земли возоб-
новился. В 1528 г. французский ученый 
Жан Фернель (1497-1558) по измерени-
ям между Парижем и Амьеном для дуги 
меридиана в 10 получил 110,6 км — по-
грешность менее 0,1%. 
Точность градусных измерений за-

метно выросла, когда для определения 
длин дуг голландский ученый Снеллиус 
(1580-1626) разработал метод триангу-
ляции. Значительный вклад в повышение точности измерений внес французский академик 
Жан Пикар (1620-1682). Он снабдил геодезические приборы зрительными трубами с сетками 
нитей. Повторив измерения между Парижем и Амьеном, он определил длину дуги меридиана 
в 1° с погрешностью менее 10 м; для радиуса Земли получил 6372 км. 
В наши дни модель сферической Земли сохраняет свое практическое значение. Ее приме-

няют в качестве промежуточной поверхности, на которую предварительно проектируют сфе-
роид, а также при мелкомасштабном картографировании и во всех случаях, когда это оправ-
дано соображениями точности. 
Работы Ньютона положили начало новым представлениям о фигуре Земли. В геодезии 

временной интервал шарообразной Земли называют периодом "от Аристотеля до Ньюто-
на". 

Сфероидическая модель Земли. В 1666 г. И. Ньютон (1643-1727) открыл всемирный за-
кон тяготения. Силы притяжения и центробежная сила формируют силу тяжести, действую-
щую по направлению отвеса. В 1672 г. астроном Ж. Рише (1640-1696) обнаружил, что на ши-
роте 5° в Кайенне маятниковые часы шли медленнее, чем на широте 49° в Париже. Это озна-
чало, что ускорение силы тяжести вблизи экватора меньше, чем в севернее расположенном 
Париже. Объяснение этому явлению в 1686 г. дал Ньютон. Он представил в теле Земли два 
канала, заполненных водой. Один канал направил от центра масс Земли к полюсу, другой — 
к экватору. Давление в каждом из каналов в центре Земли должно быть одинаково. Но цен-
тробежная сила растет от полюсов к экватору и слегка уменьшает силу тяжести в экватори-

Рис. 3.1. Метод Бируни 
определения радиуса Зем-
ли; АВ - касательная к 
земному шару линия визи-
рования, h – высота на-
блюдения, α  - угол пони-
жения горизонта. Радиус 
Земли R следует из выра-
жения: 

α+= cos)( hRR . 
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альном канале, который поэтому должен быть несколько длиннее. По расчетам Ньютона он 
длиннее на 1/230 долю. Эта величина названа сжатием. Полярное сжатие (α) определяется 
отношением разности экваториального (a) и полярного (b) радиусов Земли к ее экваториаль-
ному радиусу. 

Эллипсоид вращения Земля по форме близка к сфероиду — фигуре, которую она при-
няла бы, находясь в состоянии гидростатического равновесия и под влиянием только сил 
взаимного тяготения ее частиц и центробежной силы вращения около неизменной оси. Про-
стейшим из сфероидов является эллипсоид вращения с малым сжатием. 
Различают общеземной эллипсоид, наилучшим образом подходящий для решения гло-

бальных задач, и референц-эллипсоиды, используемые отдельными странами в картографо-
геодезических целях. В общем случае под референц-эллипсоидом понимают эллипсоид с оп-
ределёнными параметрами и определённым образом ориентированный в теле Земли. Как 
правило, в настоящее время все референц-эллипсоиды по качеству являются одновременно и 
общеземными эллипсоидами. 
С начала XVIII в. усилия учёных были направлены на определение параметров эллипсоида 

вращения — радиуса экватора и полярного сжатия Земли. В течение некоторого времени 
идея эллипсоидальности Земли вызывала сомнение и требовала доказательств. Из-за сжатия 
длина дуги меридиана в 1° у полюсов Земли равна 111,7 км, а у экватора — 110,6 км. Эта 
разница может быть обнаружена измерениями. Измерения выполнили на севере и на юге 
Франции Кассини — отец (1625-1712) и сын (1677-1756). Однако, их результаты были не-
достаточно точны. Сжатие оказалось отрицательным, -1/95. Получалось, что Земля вытянута 
вдоль полярной оси, что противоречило выводам Ньютона. Спор разрешили предпринятые 
Академией наук Франции градусные измерения по меридиану в Перу (1735-1743) и в Ла-
пландии (1736-1737). Размеры земного эллипсоида определялись неоднократно [5, 11]. Неко-
торые исторически важные результаты приведены в табл. 3.1. 

Таблица 3.1 
Эллипсоиды вращения прежних лет 

Автор Год Большая полу-
ось a (м) 

Сжатие  α 

Деламбр 1800 6 375 653 1/334 
Вальбек 1819 6 376 896 1/303 
Бессель 1841 6 377 397,155 1/299,15 
Кларк 1866 6 378 206,4 1/294,9786982 
Кларк 1880 6 378 249,145 1/293,465 
Эверест 1830 6 377 276,345 1/300,8017   
Эйри 1830 6 377 563,396 1/299,3249646 

Хейфорд 1909 6 378 388 1/297 
Красовский 1940 6 378 245 1/298,3 
Австралии 1965 6 378 160 1/298.25 
GRS - 67 1967 6 378 160 1/298,247167247 
WGS-60 1960 6 378 165 1/298,3 
WGS-66 1967 6 378 145 1/298.25 
WGS-72 1972 6 378 135 1/298,26 

Отметим как исторически важные прошлых лет, так и современные эллипсоиды: 
Деламбра – эллипсоид использован для определения по поручению Национального соб-
рания Франции длины метра, которая приравнена одной сорокамиллионной части 
длины парижского меридиана. 

Вальбека – применялся в России в XIX веке. 
Бесселя – использовался во многих странах, в том числе в СССР до 1946 г. 
Кларка 1866 г. - в странах Северной и Центральной Америки. 
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Кларка 1880 г. - в Азии, Африке и Центральной Америке. 
Эвереста 1830 г. - в Индии и других странах этого региона. 
Эйри 1830 г. – использовался в Великобритании. 
Хейфорда - в 1924 г. на конгрессе в Мадриде был провозглашен в качестве международно-

го, применялся в ряде стран Европы, Азии и Южной Америки; однако его размеры опреде-
лены недостаточно точно. 

Красовского - расчет эллипсоида выполнили в 1940 г. выдающийся ученый геодезист 
Ф.Н. Красовский (1878–1948) и его ученик А.А. Изотов (1907–1988). Постановлением 
СМ СССР от 7 апреля 1946 г. эллипсоид введен в систему отсчета 1942 г. СК-42. Постанов-
лением правительства РФ с 1 июля 2002 г. использован в системе отсчета 1995 г. СК-95. Эл-
липсоид и упомянутые координатные системы ещё будут применяться до 01.01.2017 г. 

Австралийский – на его основе построены геодезические даты 1966 г. AGD-66 и даты 
1984 г. AGD-84; позже, при введении геоцентрических дат Австралии 2000 г. GDA-2000, его 
сменил Австралийский национальный эллипсоид, основанный на параметрах WGS-84. 

GRS-67 (Geodetic Reference System, 1967) - рекомендован международными геодезически-
ми организациями в Люцерне в 1967 г. 

GRS-80 - введен решением в Канберре в 1979 г. На его основе построены Международная 
общеземная система отсчёта ITRS, Европейская система отсчета ETRS, а также современные 
геодезические координатные системы ряда стран Азии, Северной и Центральной Америки. 

WGS-60 (World Geodetic System, 1960) - модель создана усилиями армии, авиации и флота 
США на базе астрономо-геодезических, гравиметрических и спутниковых измерений. Ис-
пользовались многочисленные гравиметрические и астрономо-геодезические наблюдения. 
Эллипсоид предназначен для обеспечения работы глобальной системы позиционирования 
GPS. 

WGS-66 – определён на основе новых геодезических, гравиметрических и спутниковых 
наблюдений, использован мировой геоид, представленный гармоническими коэффициента-
ми до 24 порядка. 

WGS-72 - использованы данные Мировой спутниковой триангуляционной сети и допле-
ровские измерения системой TRANSIT. Построен в форме эквипотенциального (уровенного) 
эллипсоида вращения выбором четырех параметров: большой полуоси (a), произведения 
массы Земли на гравитационную постоянную (GM), угловой скорости вращения Земли (ω) и 
нормированного второго зонального гармонического коэффициента геопотенциала (C2,0 ). 

WGS-84. Современный эллипсоид отсчетной системы. Ее улучшения производились неод-
нократно благодаря обширным GPS-измерениям. В 1994 г. усовершенствования геодезиче-
ской основы пришлись на начало 730-ой GPS-недели. Она получила обозначение G-730. В 
1996 г. с началом 873-ой GPS-недели создана новая усовершенствованная геодезическая ос-
нова G-873. Она стала очень близкой к ITRF-96. В 2002 г. произведено третье уточнение – G-
1150. По среднему квадратическому критерию различия между координатами WGS-84 (G-
1150) и ITRF-2000 составляют ~1 см. Практически отсчетные основы WGS-84 и ITRF стали 
идентичными. 

IERS-96 (International Earth Rotation Service, 1996) - рекомендован Международной служ-
бой вращения Земли для обработки РСДБ-наблюдений внегалактических радиоисточников. 

ПЗ-90 - Параметры Земли 1990 г. Общеземной эллипсоид и система отсчёта. Система соз-
дана в России без интеграции с западными странами. Её координаты закреплены пунктами 
Космической геодезической сети КГС, построенной по фотографическим, доплеровским, 
дальномерным и альтиметрическим наблюдениям геодезических спутников ГЕОИК-1, 
ЭТАЛОН, ГЛОНАСС и др. Погрешность взаимного положения пунктов при расстояниях 
между ними до 10 000 км не более 30 см. 

ПЗ-90.02 – уточненная система отсчета; постановлением правительства РФ с 2002 г. вве-
дена в качестве единой государственной системы в целях геодезического обеспечения орби-
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тальных полетов КА и решения навигационных задач. В ней работала ГЛОНАСС. По распо-
ряжению правительства России 2007 г. КА ГЛОНАСС были переведены на эту новую вер-
сию. Она довольно близка к системам ITRF-2000 и WGS-84. Отличается от них лишь сдвигом 
начала координат примерно на 0,4 м. 

ПЗ-90.11 – новый уточнённый вариант системы отсчёта “Параметры Земли 1990 г.” По-
становлением правительства от 28 декабря 2012 г. вводится в качестве единой государствен-
ной системы координат в целях геодезического обеспечения орбитальных полетов и решения 
навигационных задач. 

ГСК-2011 – эллипсоид и геодезическая система координат 2011 года для осуществления 
геодезических и картографических работ. Прежние системы геодезических координат СК-95 
и СК-42 применяются до 1 января 2017 г. 
В настоящее время для картографо-геодезических работ наибольшее значение имеют об-

щеземные эллипсоиды GRS-80, WGS-84, IERS-96, ПЗ-90.11 и ГСК-2011. Их параметры указа-
ны в таблицах 3.2 и 3.3. 

Трехосный эллипсоид. Более точно фигуру Земли представляет трехосный эллипсоид. 
Его размеры вычисляли геодезисты Ф.Ф. Шуберт (1789-1865), дважды А.Р. Кларк 
(1828-1914) и другие. По данным Ф.Ф. Шуберта наибольшая ось эллипсоида находится в ме-
ридиане 410 04' восточной долготы, а экваториальное сжатие равно 1/8886; у А.Р. Кларка в 
первый раз — в меридиане 15034' восточной долготы при сжатии 1/3281, а во второй раз — в 
меридиане 8015' западной долготы при сжатии 1/13731. На 1991 г. трехосный эллипсоид 
Земли имел параметры: полярный радиус b = 6 356 749,4 м; экваториальные радиусы наи-
больший amax = 6 378 161,6 м, наименьший amin = 6 378 112,4 м; полярные сжатия 
αmax = 1/297,875, αmin = 1/298,560; экваториальное сжатие αe = 1/128 500; долгота наибольше-
го меридиана - 14,90. При обработке геодезических измерений и составлении топографиче-
ских карт трехосным эллипсоидом не пользуются вследствие слабо выраженной у Земли 
трехосности и чрезвычайного усложнения расчетных формул. 

Параметры эллипсоида вращения. Размеры и форму Земного эллипсоида вращения ха-
рактеризуют два параметра: большая экваториальная полуось a и сжатие α. Чаще всего эти 
параметры и указываются. Кроме них в расчетах используются производные параметры, та-
кие как малая полярная полуось b, полярный радиус с, первый e и второй e' эксцентриситеты 
меридионального эллипса и др. Первый эксцентриситет определяется отношением линейно-
го эксцентриситета, отрезка от центра эллипса до каждого из его фокусов 

22 ba − , 
к полуоси а, второй - отношением этого же отрезка к полуоси b. Значения параметров важ-
нейших общеземных эллипсоидов даны в табл. 3.2. В табл. 3.3 приведены значения парамет-
ров для эллипсоидов IERS-96, ГСК-2011 и референц-эллипсоида Красовского. 

Таблица 3.2 
Параметры современных общеземных эллипсоидов 

 GRS-80 WGS-84 ПЗ-90.11 
a 6378 137 6 378 137 6 378 136 
b 6 356 752.3141 6 356 752,314 6 356 751,362 
с 6 399 593.6259 6 399 593,626 6 399 592,578 
α 1/298.257 222 101 1/298,257223563 1/298,25784 
e2 0.00669438002290 0,006694379990 0,006694366177 
e'2 0.00673949677548 0,006739496742 0,006739482743 
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Таблица 3.3 
Параметры современных земных эллипсоидов 

 IERS ГСК-2011 Красовского 
a 6 378 136,49 6 378 136,5 6 378 245 
b 6 356 751,7505 6 356 751,7580 6 356 863,019 
с 6 399 593,1699 6 399 593,1824 6 399 698,902 
α 1/298,25645 1/298,2564151 1/298,3 
e2 0,006694397324 0,006694398106 0,006693421623 
e'2 0,006739514310 0,006739515103 0,006738525415 

Ниже дана группа формул взаимосвязей применяемых параметров: 
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Значения большой полуоси и сжатия для разных эллипсоидов табл. 3.2 и 3.3 даны с разной 
точностью. Вследствие этого другие параметры получены также с разной точностью. Можно 
оценить, как точно следует вычислять эти параметры. Будем полагать, что большая эквато-

риальная полуось a и сжатие α являются основными исходными параметрами. По ним вы-
числяются все остальные. Эти числа приближенные. Полагаем, что их ошибки не превыша-
ют 0,5 единицы последнего знака. В таком случае значения полуоси b и полярного радиуса с 
приведены с избыточной точностью, ибо для их погрешностей имеем: 

cba ∆≈∆≈∆ . 
Для погрешностей эксцентриситетов получаем 

α∆≈∆≈∆ 2'22 ee . 

Для предельной погрешности сжатия эллипсоида GRS-80 получим 15105 −×≈α∆ , для эллип-

соида ГСК-2011 - 
13105 −×≈α∆ . Поэтому 

значения эксцентрисите-
тов для GRS-80 округле-
ны до 14-го знака после 
запятой, а для ГСК-2011 
- до 12-го знака после 
запятой. С той же точно-
стью эти значения указа-
ны и для других эллип-
соидов табл. 3.2 и 3.3. 

Рис. 3.2. Геодезические коорди- 
наты точки эллипсоида Q(B,L) 

Рис. 3.3. Геоцентрические коорди 
наты точки эллипсоида Q(Ф,L) 
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Эллипсоидальные координаты. Основными координатами являются геодезическая дол-
гота L, геодезическая широта B, геоцентрическая широта Ф и так называемая приведенная 
широта U  (рис. 3.2-3.4). 

Приведенная широта (U) определяется следующим образом (рис. 3.3 и 3.4). Соединим 
точку Q на эллипсоиде с точкой на его оси вращения l так, чтобы длина отрезка между этими 
точками равнялась большой полуоси a. Острый угол, образуемый данным отрезком с плос-
костью экватора, называется приведенной широтой. Отрезок пересекает плоскость экватора 
в точке k. Отрезок Qk равен малой полуоси b эллипсоида вращения. На рис. 3.4 даны мери-
диональные сечения эллипсоида вращения с координатными осями — вертикальной z и го-
ризонтальной r. В этих координатах приведенная широта U позволяет записать уравнение 

меридионального эллипса в параметрической форме: 

.sin;cos UbzUar ==                          (3.1) 

Отсюда следует уравнение меридионального эллипса: 

1sincos 22
2

2

2

2

=+=+ UU
b

z

a

r
. 

Приведённую широту ввёл французский математик, 
работавший и в области геодезии, Лежандр (Adrien Marie 
Legendre, 1752-1833). 
Для указанных выше широт рис. 3.4 имеем: 

( )B
dr

dz
U

a

b

r

z

r

z +=






=Φ= 90tg;tg;tg . 

Первая формула следует из рис. 3.4.1. Вторая получена из уравнений (3.1). Третья запись 
есть уравнение касательной к меридиональному эллипсу, составляющей угол с горизонталь-
ной осью (90°+B). После её дифференцирования получаем: 

U
b

a
BBU

a

b

dr

dU

dU

dz

dr

dz
tgtg;ctgctg =−=−== . 

Отсюда для точек на эллипсоиде следуют формулы взаимосвязи широт B, U и Ф: 

,tg)1(tg 2 Ue−=Φ         (3.2) 

,tg)'1(tg 2 Φ+= eU        (3.3) 

,tg)'1(tg 2 UeB +=        (3.4) 

,tg)1(tg 2 BeU −=         (3.5) 

,tg)1(tg 2 Be−=Φ            (3.6) 

Φ+= tg)'1(tg 2eB .         (3.7) 

 
Полярные координаты на эллипсоиде вращения. Как уже отмечалось в Лекции 1, ими 

являются геодезический азимут и геодезическая линия. Геодезическая линия — это линия 
кратчайшего расстояния между двумя пунктами на любой поверхности. На сфере ей соответ-

Рис. 3.3. Приведённые координа-
ты точки эллипсоида Q(U,L) 

Рис. 3.4. Эллипсоидальные широты в меридиональном сечении r: 
1) геоцентрическая Ф, 2) приведённая U, 3) геодезическая B 
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ствует ортодромия, на плоскости — прямая. Название геодезическая линия принято не толь-
ко в геодезии, но и в математике. 
Клеро (Alexis Claude Clairaut, 1713-1765, французский, математик, астроном, геодезист) в 

1733 г. доказал, что на поверхности вращения в каждой точке геодезической линии произве-
дение радиуса параллели r на синус азимута A линии величина постоянная: 

constsinsin =°= AaAr . 

Константа равна произведению большой полуоси эллипсоида (a) на синус азимута (A0) 
линии в точке на экваторе. Линия совпадает с меридиа-
ном, когда азимут A0 = 0. Из всех геодезических линий 
только меридианы проходят через полюса. Когда 
A0 = 900, геодезическая линия совпадает с экватором. В 
иных случаях по мере ухода к северу геодезическая ли-
ния постепенно уклоняется от меридиана, так как радиус 
параллели уменьшается и, следовательно, её азимут дол-
жен увеличиваться. Ход геодезической линии показан на 
рис. 3.5. После пересечения экватора в точке Q1 геодези-
ческая линия достигает точки Q2 на параллели, где будет 
sin A = 1. Начиная с этой параллели, геодезическая линия 
повернет к югу. В точке Q3 пересечёт экватор. В точке Q4 

коснется параллели, после чего повернёт на север. Таким образом, геодезическая линия бу-
дет описывать витки, последовательно касаясь то на севере, то на юге параллелей, где 
sin A = 1. Геодезическая линия, как пространственная кривая, обладает кручением. Поэтому 
после каждого витка она смещается по долготе, опутывая эллипсоид бесконечным числом 
витков. В навигации используется также линия постоянного азимута – локсодромия. 

Нормальные и наклонные сечения. Плоскости, проходящие через нормаль к поверхно-
сти эллипсоида, называют нормальными. Нормальная плоскость пересекает поверхность эл-
липсоида по плоской кривой, называемой нормальным сечением. 

Построение нормального сечения можно 
представить следующим образом. В точке I ус-
танавливается теодолит. Его вертикальная ось 
совмещается с нормалью к эллипсоиду. При 
этом уровень на горизонтальном круге теодоли-
та будет почти в нуль пункте, так как отвесные 
линии в среднем уклоняются от нормали лишь 
на 1-3".Труба теодолита наводится на точку K. 
Нормальной будет плоскость, проведенная через 
вертикальную и визирные оси теодолита. 
Нормали, проведенные к эллипсоиду через 

точки, не лежащие на одном меридиане или на 
экваторе, взаимно не пересекаются, но при этом 

все они пересекают малую ось эллипсоида вращения. Поэтому нормальное сечение, напри-
мер, IiK , проведенное с некоторой точки I на другую точку K, не совпадает с нормальным се-
чением KkI, проведенным в обратном направлении - с точки K на точку I (рис. 3.6). Прямое и 
обратное нормальные сечения называют взаимными. Сфероидический треугольник - разо-
рванная фигура. На рис. 3.7 закрашены углы, измеряемые теодолитом между прямыми сече-

Рис. 3.6. Взаимные нормальные сечения и геоде-
зическая лини 

Рис.3.5. Виток геодезической линии 
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ниями. В треугольниках разрывы устраняют, заменяя взаимные сечения геодезическими ли-
ниями. 
В текущей точке I (рис. 3.6 б) разность азимутов геодезической линии A и прямого нор-

мального сечения An и разность длин геодезической S и нормального сечения Sn, если длины 
линий малы по сравнению с радиусами кривизны эллипсоида, определяются формулами: 

,2sincos
12

"
)"( 22

2

2
ABS

a

e
AA In

ρ=−  

.2sincos
360

)( 24
4

54
AB

a

Se
SS In =−  

Геодезическая линия лежит ближе к прямому нормальному 
сечению, деля угол между нормальными сечениями в отно-
шении 1 к 2. В худшем случае, когда широта ВI = 0, азимут 
линии A = 450 

и ее длина S = 1000 км, разность азимутов нор-
мального сечения и геодезической линии менее 3", а разность 
их длин — менее 0,1 мм. Длину нормального сечения можно 
принять равной длине геодезической линии. Расхождения 
азимутов в высокоточных работах учитывают даже при лини-
ях длиной в 30 км. 

Существуют два нормальных сечения, имеющие наибольший и наименьший радиусы кри-
визны. Их называют главными нормальными сечениями, а их радиусы - главными радиусами 
кривизны. Одним из главных нормальных сечений является меридиан . Меридианные плос-
кости проходят через полярную ось. Вторым главным будет нормальное сечение, перпенди-
кулярное к меридиану. Его называют сечением первого вертикала. К этому сечению от-
носится также и экватор. 
Сечения, образуемые плоскостями, не проходящими через нормали, называют наклонны-

ми. Все параллели образуются наклонными сечениями и являются окружностями. Их плос-
кости перпендикулярны оси вращения, а с плоскостью первого вертикала составляют углы, 
равные геодезической широте B. 

Радиусы кривизны эллипсоида вращения. Рассмотрим следующие радиусы: радиус па-
раллели r, радиус кривизны меридиана M, радиус кривизны первого вертикала N, радиус кри-
визны произвольного нормального сечения RA, средний радиус кривизны R, радиус-вектор 
эллипсоида вращения ρ, а также радиус всего земного шара R⊕. 

Радиус параллели. Воспользуемся для радиуса параллели r 
формулой (3.1). Выразив в ней cosU через tgU, а последний через 
tgB, получим радиус параллели в функции геодезической широты 
B: 

.
22sin1

cos

Be

Ba
r

−
=                                         (3.8) 

Радиус кривизны меридиана. Для бесконечно малой дуги ме-
ридиана радиуса M, соответствующей изменению широты на ве-
личину dB, имеем (рис. 3.8): 

dBMdS= . 

В треугольнике CDE угол при вершине C равен (900-B). С рос-
том широты B радиус параллели r убывает. Поэтому имеем: 

;sinBdSdr =−  
                                                       dBBMdr sin−= . 

Рис. 3.8. Определение 
радиуса кривизны мери-
диана 

Рис.3.7. Разрывы сфероиди-
ческого треугольника устра-
няют, соединяя его вершины 
геодезическими линиями 



 
Б.Б. Серапинас  ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ              Геодезические координаты   Лекция  3 

 47 

Отсюда следует 

.sinBM
dB

dr
−=                                                         (3.9) 

Дифференцируя радиус r (3.8) по широте B, получаем: 

.])sin1(cossin)sin1(sin[ 2/3222222 2/1 −− −+−−= BeBBeBeBa
dB

dr
 

Отсюда следует 

.sin)sin1(sin)1( 2/3222 BMBeBea
dB

dr
−=−−−−=  

Окончательно для радиуса кривизны меридиана получаем: 

.
)cos'1()sin1(

)1(
2/3222/322

2

Be

c

Be

ea
M

+
=

−
−=                                   (3.10) 

Вторая формула для M получена после преобразований первой с учётом взаимосвязей ме-
жду параметрами эллипсоида вращения a, c, e2, e’2. 
В геодезии используют так называемые основные сфероидические функции: 

BeVBeW 2222 cos'1.;sin1 +=−= . 
С учётом этих функций радиус кривизны меридиана принимает вид: 

.
)1(

33

2

V

c

W

ea
M =−=  

Легко заметить, что радиус М у полюса больше, чем на экваторе. Иначе, кривизна мери-
диана убывает от экватора к полюсам. Радиус меридионального сечения получает наиболь-
шие изменения на широте B = 450; на этой широте изменение dB = 10 вызывает изменение 
радиуса dM ≈ 1 км. 
Радиус кривизны меридина M нужен для вычисления длин дуг меридианов и нахождения 

широт по ним. 

Радиус кривизны первого вертикала. Обозначим радиус кривизны первого вертикала 
через N. Параллель и сечение первого вертикала имеют общую касательную в точке на мери-
диане, кроме того, угол между нормальной плоскостью первого вертикала и наклонной 
плоскостью параллели равен геодезической широте B. По теореме Менье (Jean-Baptiste 
Marie Charles Meusnier de la Place, 1754-1793, французский математик), если нормальное и 
наклонное сечения имеют общую касательную, то радиус кривизны наклонного сечения ра-
вен радиусу кривизны нормального сечения, умноженному на косинус угла между плоско-
стями этих сечений: 

.cosBNr =                                                               (3.11) 

Заменив r выражением (3.8), получим: 

Be

c

Be

a
N

2222 cos'1sin1 +
=

−
= .                                        (3.12) 

Вторая формула для N получена после преобразований первой с учётом взаимосвязей 
между параметрами эллипсоида вращения a, c, e2, e’2. Используя обозначения основных сфе-
роидических функций, получаем: 

V

c

W

a
N == . 
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На всех точках эллипсоида, кроме плюсов, N > M. Из всех радиусов нормальных сечений 
наибольшим является N, а наименьшим — M. На полюсах радиусы M = N =с. В связи с этим 
параметр c называют полярным радиусом кривизны . 
Радиус кривизны N используют для вычислений радиусов параллелей, разностей долгот и 

в других задачах. 

Радиус кривизны произвольного нормального сечения. Радиус кривизны RA нормаль-
ного сечения, проведенного под азимутом А, находят по формуле Эйлера (Leonhard Euler, 
1707-1783, швейцарский, немецкий, российский математик, физик, астроном): 

.
sincos1 22

N

A

M

A

RA

+=                                                      (3.13) 

Замечаем, что при азимутах A = 0 и A = 1800 радиус RA = M, а при азимутах A = 900 
и 

A = 2700 радиус RA = N. 

Средний радиус кривизны. Средним радиусом кривизны в данной точке эллипсоида на-
зывают предел, к которому стремится среднее арифметическое из радиусов кривизны всех 
возможных нормальных сечений в этой точке. Если через точку на эллипсоиде проведены 
нормальные сечения, азимуты A которых отличаются на бесконечно малые величины dA, то 
средний радиус R, учитывая симметрию нормальных сечений по квадрантам, будет: 

.
2

2
1 2

0

2

0
∫π

=∫π
=

ππ
dARdARR AA  

С учетом формулы (3.13) после интегрирования получают: 

.MNR =                                                                (3.14) 

Средний радиус кривизны равен среднему геометрическому из значений главных радиу-
сов кривизны. 
Радиус R употребляют в задачах, связанных с развертыванием поверхности эллипсоида на 

поверхность сферы. 

Радиус-вектор эллипсоида. Обозначим радиус-вектор буквой ρ. Он соединяет центр эл-
липсоида с точкой на его поверхности. Для радиуса параллели r имеем: 

.coscos BNФr =ρ=  

Выражая cosФ через tgФ, получаем: 

.2tg1cos Φ+=ρ BN  

Заменяя tgФ через tgB, для радиус-вектора находим: 

.2sin)22(21 BeeN −−=ρ                                                (3.15) 

В данном выражении радиус-вектор является функцией геодезической широты B. Пред-
ставим его в функции геоцентрической широты. Для радиуса параллели r имеем: 

.coscos Uar =Φρ=  

Выразив cosU через tgU, а тот через tgФ, получим формулу радиус-вектора в функции гео-
центрической широты Ф: 

.
sin'1 22 Φ+

=ρ
e

a
                                                        (3.16) 

Радиус-вектор применяют в вычислениях потенциалов силы тяжести на поверхности уро-
венного эллипсоида, высот геоида, квазигеоида и в других задачах. 
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Радиусы эллипсоида зависят от широты. В табл. 3.4 приведены их значения на разных 
широтах и показан диапазон их изменения ∆max в километрах и в процентах. Наибольшие 
изменения претерпевает радиус меридиана (1%), наименьшие – радиус-вектор и радиус кри-
визны первого вертикала (1/3 %). 

Длины дуг меридианов, параллелей, площади сфероидических трапеций. Линии ме-
ридианов и параллелей на шаре и на эллипсоиде формируют координатную географическую 
сетку. Изображение географической сетки в плоскости карты создает координатную карто-
графическую сетку. Длины дуг меридианов, параллелей и ограниченные этими линиями пло-
щади сфероидических трапеций, а также площади треугольников, являются важными вели-
чинами для построения и использования географических карт. 

Таблица 3.4 
Радиусы земного эллипсоида на разных широтах 
Широта B° M, км N, км R, км ρ, км 

0 6 336 6 378 6 357 6 378 
30 6 351 6 384 6 368 6 373 
60 6 384 6 394 6 389 6 362 
90 6 400 6 400 6 400 6 357 

∆max, км 64 22 43 21 
∆max, % 1 1/3 2/3 1/3 

Вычисление длины дуги параллели. Длина дуги Sn (м) параллели радиуса r, располо-
женной между двумя меридианами с долготами L1, L2, выраженными в радианах, вычисляет-
ся по формуле: 

)( 12 LLrSn −= . 

Вычисление длины дуги меридиана. Длина дуги меридиана X (м) протяженностью от 
экватора до некоторой параллели широты B, выраженной в радианах, вычисляется по фор-
муле: 

∫ ∫ −−== −B B
dBBeeadBMX

0 0

2/3222 .)sin1()1(                                  (3.17) 

Элементарная дуга меридиана dX рассматривается как бесконечно малая дуга окружности 
радиуса M. Ее длина dX = M dB. Дугу меридиана получают интегрированием элементарных 
дуг от экватора до параллели широты B. Этот интеграл не выражается в элементарных функ-
циях, и его решают численно или разложением в ряд. 

Численные определения длин дуг меридианов. Дуга меридиана расположена между па-
раллелями геодезических широт B1 и B2. Вычисляют среднюю широту Bm= (B1+B2)/2. По 
этой широте определяют радиус кривизны меридиана Mm, а затем вычисляют длину дуги ме-
ридиана по формуле (B - в радианах): 

)( 12 BBMS mm −= .                                                      (3.18) 

Иными словами, дуга эллипса заменена дугой окружности радиуса Mm. Погрешность фор-
мулы составляет: 

менее 1 мм для дуг длиной до 45 км, 

около 3 см при их длине в 100 км, 

около 30 м при длине в 1000 км. 

Чем линия длиннее, тем больше её ошибка вычислений. 

Однако, при этом надо учитывать и графическую точность масштаба карты, принимаемую 
в картографии равной 0,1 мм. Эта точность вполне достаточна, например, для расчётов длин 
боковых рамок топографических карт всего масштабного ряда (табл. 3.5). Так, в масштабе 



 
Б.Б. Серапинас  ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ              Геодезические координаты   Лекция  3 

 50 

1:100 000 при графической точности 10 м ошибка будет около 1 мм. При более крупных мас-
штабах эта ошибка станет еще меньше. В масштабе 1:1 000 000 графическая точность допус-
кает ошибку в 100 м. Между тем расстояния длин боковых рамок будут вычислены с ошиб-
кой лишь 30 м. 
Расчётную формулу легко уточнить небольшим её усложнением, вычисляя интеграл (3.17) 

методом парабол Симпсона. Эллипс заменен дугой параболы. Формула принимает вид: 

.
6

)(
)4( 12

21

BB
MMMS mm

−++=                                            (3.19) 

По этой формуле длины дуг меридианов до 500 км вычисляют с погрешностями в 1-2 см. 

Таблица 3.5 
Погрешности вычислений боковых рамок листов топографических карт 

Масштаб Длина рамки 
Sm , км 

Графическая 
точность, м 

Погрешности 
в Sm 

1:100 000 37 10 < 1 мм 

1:200 000 74 20 < 3 см 

1:500 000 220 50 < 1 м 

1:1 000 000 445 100 < 30 м 

Строгое вычисление длины дуги меридиана. С этой целью в (3.17) подынтегральную 
функцию разложим в ряд Маклорена (Colin Maclaurin, 1698-1746, английский математик): 

L++++=− − 322\3

16
35

8
15

2
3

1)1( xxxx  

K++++=− − BeBeBeBe 6644222/322 sin
16
35

sin
8

15
sin

2
3

1)sin1(  

Синусы четных степеней заменим косинусами кратных дуг: 

;4cos
8

1
2cos

2

1

8

3
sin;2cos

2

1

2

1
sin 42 BBBBB +−=−=  

.6cos
32

1
4cos

16

3
2cos

32

15

16

5
sin6 BBBB −+−=  

После этих преобразований и интегрирования получают: 

K+−+−= BCBCBCBCX 6sin4sin2sin 6420                              (3.20) 

где B - широта в радианах, дуга X в метрах. 
Для коэффициентов (табл. 3.6) имеем (м): 

;
256

6175

64

445

4

23
1)1( 2

0 












++++−= K

eee
eaС  

;
1024

6525

32

415

8

23
)1( 2

2 












+++−= K

eee
eaC  

;
1024

6105

256

415
)1( 2

4 












++−= K

ee
eaC   
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.
3072

635
)1( 2

6 












+−= K

e
eaC  

Эти коэффициенты также могут вычисляться по формулам: 

;sssssC K+++++= 864200 128

35

16

5

8

3

2

1
 

;ssssC 






 ++++= K86422 8

7

16

15

4

1
 








 +++= K8644 4

7

2

3

32

1
sssC ; 








 ++= K866 2

1

96

1
ssC ; 

( )2
0 1 eas −= ;  0

2
2 2

3
ses = ; 

2
2

4 4

5
ses = ;  4

2
6 6

7
ses = ; 

6
2

8 8

9
ses = . 

Длина дуги Sm меридиана между двумя параллелями с широтами B1 и B2 равна 

12 XXSm −= . 

Точность формул характеризуется ошибками, меньшими десятых долей миллиметра. 

Таблица 3.6 
Значения коэффициентов для вычислений длин дуг меридианов (м) 

 

Вычисление геодезической широты B по длине дуги меридиана X. Обратная задача, 

вычисления широт по длинам дуг меридианов, решается по формулам, полученным обраще-

нием тригонометрических рядов в (3.20). Имеем в радианах: 

;6sin4sin2sin 642 K+β+β+β+β= DDDB                                      (3.21) 

;
C

X

0

=β  









−+= 2

0

2
2

0

4

0

2
2 2

1
C

C

C

C

C

C
D ; 

Коэф-
фици-
енты 

WGS-84 ПЗ-90.11 ГСК-2011 Красовского 

C0 6 367 449,1458 6 367 448,1695 6 367 448,6176 6 367 558,4968 

C2 16 038,5086 16 038,4730 16 038,5508 16 036,4802 

C4 16,8326 16,8325 16,8327 16,8281 

C6 0,0220 0,0220 0,0220 0,0220 
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0
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4 C
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Широта B получается в радианах. Значения коэффициентов даны в табл. 3.7 (числовые 
значения, взятые из таблицы, умножаются на 10-10). 

 
Таблица 3.7 

Значения коэффициентов для вычислений широт по длинам дуг меридианов 

WGS-84 ПЗ-90.11 ГСК-2011 Красовского 
Коэф-
фици-
енты ×10-10 ×10-10 ×10-10 ×10-10 

D2 25 188 265,8 25 188 213,6 25 188 334,2 25 184 647,7 

D4 37 009,6 37 009,4 37 009,8 36 998,9 

D6 74,5 74,5 74,5 74,4 

В формулах (3.20) и (3.21) иногда предпочитают заменить функции кратного аргумента 
степенными функциями: 

;cossin22sin xxx =  

( );sin42cossin24sin 2 xxxx −=  

( ) .sin16sin163cossin26sin 42 +−= xxxx  

Для вычисления, например, длины дуги меридиана, получаем (м): 

( ) ( ) ( )[ ]4
6

2
646420 sin32sin328642cossin CBCCCCCBBBCX +−++−−= . 

Полезно помнить следующие соотношения между соответственными величинами широт и 
длин дуг меридиана: 0,0001" ⇔ 3 мм, 0,001" ⇔ 3 см, 1" ⇔ 31 м, 1' ⇔ 1,85 км и 10 ⇔ 111 км. 

Вычисление площади сфероидической трапеции. Сфероидическая трапеция поверхно-
сти эллипсоида ограничена меридианами и параллелями (рис. 3.9). Бесконечно малая пло-

щадка сфероидической трапеции dP равна произведе-
нию бесконечно малых дуг меридиана и параллели, 
равных соответственно dX = M dB и dY = r  dL: 

BdBdLRrMdBdLdP cos2== . 

Отсюда, подставляя выражение среднего радиуса R, 
для площади P трапеции, ограниченной параллелями с 
широтами B1 и B2 и меридианами L1 и L2, получают: 

∫ ∫
−−=

2

1

2

1

2222 .)1( sincos
L

L

B

B
dLdBBeBbP  

Площадь P сфероидической трапеции, ограниченной параллелями с широтами B1 и B2 и 
меридианами с долготами L1 и L2, равна: 

)()( 1212 FFLLP −−= . 

При этом 

Рис. 3.9. Сфероидическая трапеция 
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∫
−−=

B
dBBeBbF

0

2222 .)sin1(cos  

Геометрически величина F представляет площадь поверхности эллипсоида вращения, ог-
раниченную экватором, параллелью широты B и двумя меридианами с разностью долгот в 
один радиан. Она участвует в расчетных формулах равновеликих картографических проек-
ций. Её можно вычислить двумя путями. Вычислим разложением в ряд функции под инте-
гралом, воспользовавшись формулой: 

( ) K+++=− − 22 3211 xxx  

( ) K+++=− −
BBeBBeBBeB 4422222 sincos3sincos2cossin1cos . 

При этом учитывается следующее правило интегрирования: 

∫ −≠
+

+= .1sin
1

1
sincos ,1 nприB

n
dBBB nn  

Получаем: 

.)sin
7
4

sin
5
3

sin
3
2

(sin 7654322
K++++= BeBeBeBbF                              (3.22) 

Если в формуле малую полуось b представить в километрах, то площадь F будет получена 
в километрах квадратных (км2). 
Вычислим площадь Pe всей поверхности эллипсоида. Для этого примем (L2 - L1) = 2π, 

B1 =  0, B2 = π/2, полученный результат удвоим. Тогда 

)
7
4

5
3

3
2

1(4 6422
K++++π= eeebPe . 

Для интегрирования в замкнутом виде необходимо воспользоваться подстановкой 
e sinB = sinX.  Отсюда следует e cosB dB = cosX dX.  В результате получают: 










−
++

−
=

Be

Be

eBe

Bb
F

sin1

sin1
ln

2

1

sin1
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2 22

2

.                                  (3.23) 

Если в формулах малую полуось b взять в километрах, то площадь получим в км2. Выра-
жая полуось b через большую полуось a, для всей площади эллипсоида получим: 


















−
+−π= +

e
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e
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1
ln

2
1

2
2

2 1 . 

Площади поверхностей основных эллипсоидов в квадратных километрах указаны ниже: 

Эллипсоид WGS-84 ПЗ-90.11 ГСК-2011 Красовского 
Площадь 510 065 622 510 065 464 510 065 539 510 083 059 

Приведенные формулы, в частности, находят применение в картометрических работах и 
построениях равновеликих картографических проекций. 

Вычисление площади сферического и сфероидического треугольника. Такие решения 
имеют место при картометрии на эллипсоиде. Сторонами треугольников являются линии 
кратчайших расстояний. Площадь F’  сферического треугольника определяется произведени-
ем квадрата радиуса сферы R на сферический избыток ε (отклонение суммы углов треуголь-
ника от значения π): 

2' RF ε= . 
Для вычисления сферического избытка удобна формула: 

2
tg

2
tg

2
tg

2
tg

4
tg

γ−β−α−=ε ssss
, 
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где α, β, γ – стороны треугольника, выраженные в долях радиуса, s = (α+β+γ)/2. Если в каче-
стве R выбран средний радиус кривизны (3.14), то в пределах широтного пояса сфероидиче-
ские треугольники могут решаться как сферические с точностью, указанной ниже в табл. 3.9. 
Существуют и другие способы решения сфероидических треугольников* 

Радиус всего земного шара. Этот радиус можно выбрать, исходя из различных сообра-
жений. Определим радиусы шара несколькими способами: Rab — равный среднему из 
полуосей эллипсоида; Rпл — одинаковой с эллипсоидом площадью Р поверхности; Rоб — 
одинакового объема; R⊕ — средний из перечисленных выше. Для них имеем: 

,; 3 2

4
;

3
baR

P
R

baa
R обab пл

=
π

==
++

 

.
3

обплab RRR
R

++
=⊕  

Данные формулы после разложения в ряд принимают вид: 
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1
1( 642
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1
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K−−−−= eeeaRпл  
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1
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K−−−−= eeeaRоб  

.)
90723606

1
1( 642 25819

K−−−−=⊕ eeeaR  

Значения этих радиусов для эллипсоидов GRS-80 и Красовского даны в табл. 3.8. 

Таблица 3.8 
Радиусы всего земного шара 

Радиусы, м GRS-80 Красовского 
Rab 6 371 008.7714 6 371 117.673 
Rпл 6 371 007.1810 6 371 116.083 
Rоб 6 371 000.7900 6 371 109.694 
R⊕ 6 371 005.5808 6 371 114.483 
X 10 001 965.7293 10 002 137.498 
X⊕ 10 007 552.1600 10 007 723,230 

∆X=X⊕-X 5586.43 5585.732 
∆X/ X 1/1790 1/1791 

S 10 018 754,17 10 018 923,82 
S⊕ 10 007 552,16 10 007 723,23 

∆S=S⊕-S 11 202.01 11 200.79 

∆S/ S 1/894 1/894 

В табл. 3.8 приведены вычисленная строгим способом дуга X меридиана от экватора до 
полюса и её значение X⊕, определённое по радиусу R⊕  Получено их различие в абсолютной и 
относительной мерах. Такие же вычисления выполнены и для четверти длины экватора. 
Расчёты показывают, что в качестве среднего радиуса земного шара можно принять зна-

чение R⊕ = 6 371 км. Оно подходит для всех общеземных эллипсоидов, а также и для эллип-
соида Красовского. Шар такого радиуса по своим размерам, площади поверхности и объему 

                                                           
* Серапинас Б. Б. О вычислении площадей сфероидических треугольников. Геодезия и картография. 2012. № 9. 
С. 2-6. 
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очень близок к земному эллипсоиду. Однако длина дуги меридиана между экватором и по-
люсом на шаре будет на 5,6 км длиннее, чем на эллипсоиде, а четверть длины экватора будет 
на 11,2 км короче, чем эллипсоиде. В относительной мере эти искажения составляют соот-
ветственно около 1/1800 и 1/900. 
Возможны и другие размеры радиуса шара [6, с. 59]. Так, если взять радиус шара равным 

большой полуоси эллипсоида, то экватор изобразится без изменений, но в длине меридиана 
между полюсом и экватором погрешность составит 16,8 км. Если же в качестве радиуса шара 
принять малую полуось эллипсоида, то погрешность по меридиану будет 16,8 км, а по эква-
тору — 33,6 км. Чтобы разница на эллипсоиде и на шаре в длинах дуг четверти меридиана и 
четверти экватора была одинаковой, равной 8,4 км, радиус шара следует брать равным 
6372,9 км. В этом случае относительная линейная погрешность составит 1:1200. 
Эти расчёты показывают, что земной шар с единым радиусом по точности вполне удовле-

творяет топографические и картографические работы. Для геодезических целей в большин-
стве случаев нужны более высокие точности.  

Отображение эллипсоида на шар. Сферическая и сфероидическая модели Земли допол-
няют друг друга. При решении задач на эллипсоиде используются довольно громоздкие фор-
мулы. Поэтому во всех случаях, когда точность решаемых задач допускает, всю поверхность 
эллипсоида или ее часть заменяют поверхностью шара подходящего радиуса. Такая замена 
особенно актуальна при мелкомасштабном картографировании. Кроме того, в математиче-
ской картографии применяется способ двойного проектирования, когда эллипсоид проекти-
руется на шар, а после этого шар отображается в заданной проекции на плоскости. 

Способы отображения поверхности эллипсоида на шар. При отображении эллипсоида 
на шар возникает задача выбора радиуса шара и способа перехода от геодезических широт B 
и долгот L к сферическим широтам ϕ и долготам λ. Обычно эллипсоид с шаром совмещают 
так, чтобы совпадали их центры, оси вращения и плоскости начальных меридианов. Тогда 
плоскости экваторов и плоскости всех меридианов также совпадут, и долготы не изменятся, 

L=λ . 
Преобразованию подлежат только широты. При этом их значения на полюсах и на эква-

торе остаются без изменений, и меняются тем сильнее, чем точки ближе к средним широтам. 
Важно иметь представление об искажениях на шаре длин, площадей и углов. В этом слу-

чае частные масштабы длин m по меридианам, n по парал-
лелям, частный масштаб площади p и максимальное иска-
жение углов ω оцениваются формулами [2, с.65]: 

;
cos
cos

;
dLBN

dR
n

MdB

Rd
m

λϕ=ϕ=  

.
2

sin;
nm

nm
mnp

+
−=ω=  

Масштабы m и n являются экстремальными – один из 
них имеет наибольшее значение, а другой – наименьшее 
значение. При равноугольном отображении m = n. 
Значения сферических широт и выбор радиуса шара оп-

ределяются способом отображения. Ниже рассмотрено 
шесть способов отображения эллипсоида на шар. 

Отображение по нормалям. Сферическая широта оп-
ределяется по нормали к шару, проведённой параллельно нормали в заданной точке к эллип-
соиду. Поэтому сферические и геодезические широты остаются равными друг другу: 

Рис.3.10. Выделение сфероидиче-
ского пояса для его отображения 

на сфере 
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.B=ϕ  
В этом способе отпадает надобность в перевычислениях не только долгот, но и широт. 
На шаре искажаются углы. Однако искажения углов не зависят от радиуса сферы R. Их 

максимальное значение оценивается формулой [4, 57 с.]: 
ϕ=ω 2cos'9,22' . 

Искажения углов максимальны на экваторе (22,9′) и убывают до нуля на полюсах. 
Масштабы длин m по меридианам и n по параллелям зависят от отношений радиуса сферы 

с главными радиусами кривизны эллипсоида M и N: 

.;
N

R
n

M

R
m ==  

На эллипсоиде во всех точках, кроме полюсов, M < N. Поэтому длины отрезков более все-
го искажены на меридианах. В геодезических целях по нормалям проектируют не всю по-
верхность эллипсоида, а лишь сфероидический пояс шириной 2∆X, где ∆X – половина шири-
ны пояса, считая от средней параллели Bo (рис. 3.10). Радиус шара приравнивают среднему 
радиусу кривизны эллипсоида на параллели B0: 

ooo NMR = . 

Тогда по формуле, верной в диапазоне широт 30-60°, можно оценить, при каких удалени-
ях ∆Xmax к северу и к югу по меридиану от этой параллели относительная разность в расстоя-
ниях на эллипсоиде и на шаре не превысит заданной величины Vmax [6, 62 с.]: 

.)(3
max3 maxmax 122990

2
6

22 кмVV
e

aX ≈=∆  

Результаты расчётов по формуле, заимствованные из книги [6, 62 с.], отражены в табл. 3.9. 
Таблица 3.9 

Ширина сфероидического пояса, в пределах которого 
задачи с заданной точностью можно решать на сфере 

Относительная 
погрешность Vmax 

Величина макс. 
искажений 

Ширина пояса 
2∆Xmax (км) 

10-8 1 мм на 100 км 265 
10-6 1 мм на 1 км 1230 
10-5 1 см на 1 км 2650 

В рамках параметров табл. 3.9 сфероидические задачи можно решать на сфере с указанной 
точностью. Например, все сфероидические треугольники в пределах пояса шириной 265 км 
можно решать как сферические с относительной погрешностью длин Vmax=10-8 [6, 62 с.]. 

2. Геоцентрическое  проектирование. В этом случае из центра эллипсоида некото-
рым радиусом R описывается сфера и на нее проектируется поверхность эллипсоида лучами, 
идущими из центра этой сферы. По построению сферические широты соответствуют геоцен-
трическим широтам эллипсоида. Поэтому сферические широты следуют из выражения: 

Be )tg1(tg 2−=ϕ . 
Данное отображение является практически равноугольным. Наибольшее искажение углов, 

по оценке в [4, с. 58], около 1″. Масштабы изображения принимают вид: 

( ) ,
sin1 22 Bea

R
nm

−
==  

где R – радиус шара, a – большая полуось земного эллипсоида, e - его эксцентриситет. 
Радиус шара влияет на величины искажений. Можно, как и в предыдущем случае, принять 

его равным среднему радиусу на заданной параллели Bo. В пособии [2, с. 68] говорится о по-
строении практически равноугольного отображении при радиусе шара R = a. 
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Если радиус шара приравнять 

( )oBeaR 22 sin1−= , 

то на этой параллели будет выполняться условие: 
10 === pnm oo . 

Формула говорит об отсутствии искажений на выбранной средней параллели. 
К.Ф. Гаусс для замены геодезических вычислений на сфероиде вычислениями на шаре ис-

пользовал подобное отображение, применив шар, касающийся эллипсоида по заданной па-
раллели Bo [4, с. 59]. 

3. Равноугольное  проектирование. Углы с поверхности эллипсоида на шар перено-
сятся без искажений. Условием равноугольного отображения (dλ = dL) является: 

BN

R

MdB

Rd
nm

cos
cosϕ=ϕ== . 

Учитывая равенство широт φ и B на экваторе и на полюсах, получают уравнения равенст-
ва так называемых изометрических широт для шара (qш) и для эллипсоида вращения (q): 

∫∫ =
ϕ

ϕϕ B

r

MdBd

00 cos
. 

qqш =  

Изометрическая широта – это широта, при которой линейные масштабы в каждой точке 
проекции по любым направлениям становятся одинаковыми. После интегрирования для изо-
метрических широт шара и эллипсоида получают: 








 ϕ+π=
24

tglnшq , 






















+
−








 +π=
e

Be

BeB
q

sin1
sin1

24
tgln . 

Условие равенства изометрических широт равносильно следующему равенству: 

2

sin1
sin1

24
tg

24
 tg

e

Be

BeB









+
−








 +π=






 ϕ+π
. 

По этой формуле геодезические широты B пересчитывают в сферические широты ϕ. 
Формулы частных масштабов по меридианам и параллелям принимают вид: 

22
2

,sin
2

1 mpB
e

a

R
nm =








+== . 

Радиус шара принимают R = a. Наибольшие различия сферических и геодезических широт 
на широте 45°. На полюсах m ≈ 1,003. Если потребовать на широте Bo равенства частных мас-
штабов единице, то, пренебрегая величинами большими e2, для радиуса шара следует при-
нять 









−= B

e
aR 2

2

sin
2

1 . 

Способ предложил в 1807 г. Мольвейде (Carl Brandan Mollweide, 1774-1825, математик и ас-
троном). Равноугольным отображением эллипсоида на шар неоднократно занимался К.Ф. Га-
усс. 

4. Равновеликое  проектирование . Выполняется под условием равенства площадей 
поверхностей шара и эллипсоида. Это условие приводит к требованию равенства площадей 
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сферических и сфероидических трапеций, ограниченных экватором, параллелями, заданны-
ми соответственными широтами ϕ и B, и двумя меридианами с разностью долгот в один ра-
диан (3.23). Широты находят из выражения: 












−
++

−
=ϕ

Be

Be

eBe

Bb
R

sin1

sin1
ln

2

1

sin1

sin

2
sin

22

2
2 . 

При этом на экваторе широты 
0==ϕ B , 

на полюсах 
2/B π±==ϕ . 

С учетом соотношений широт на Северном полюсе и симметрий эллипсоида и шара отно-
сительно экватора, для вычисления радиуса шара получается следующая формула: 

2/
1

1
ln

2

1

1

1
2 









−
++

−
=

e

e

ee
bR . 

Для частных масштабов длин и максимальных искажений углов имеем [9 с. 39; 1 с. 76]: 

B
e

m 2
2

cos
6

1+= , 

B
e

n 2
2

cos
6

1−= , 

Be 22 cos'1146'=ω . 

Радиус R для эллипсоидов GRS-80 и Красовского указан в табл. 3.8. Наибольшие искаже-
ния на экваторе: m ≈ 1,001, n ≈ 0,999, ω ≈ 7,6′. 

5. Проектирование  сохранением  длин  параллелей . Условие отображения эл-
липсоида при сохранении длин его параллелей на шаре следует из требования равенства ра-
диусов (r) соответствующих параллелей эллипсоида и шара: 

UaR coscos =ϕ , 
где U – приведенная широта эллипсоида. Поэтому при равенстве радиуса шара большой по-
луоси эллипсоида 

aR = , 
сферическая широта ϕ равна приведенной широте U и вычисляется по формуле: 

Be tg1tg 2−=ϕ . 
Искажения на шаре можно оценить по формулам [1 с.77]: 

K++=== B
e

pmn 2
2

cos
2

1,1  

Be 22 cos'1719'=ω . 

6. Проектирование  сохранением  длин  меридианов. Сферическая широта вы-
числяется из условия равенства длин меридианов на шаре и на эллипсоиде. При этом сфери-
ческая широта вычисляется по длине дуги X меридианов эллипсоида по формуле: 

R/X=ϕ . 
Длина дуги меридиана X протяженностью от экватора до текущей широты вычисляется по 

формуле (3.20). Равенство меридиональных дуг на шаре и на эллипсоиде должно сохраняться 
при любых широтах, в том числе и длин дуг от экватора до полюса. Для дуг от экватора до 
полюса (B = π/2) имеем: 

220 /R/CX π=π= . 

Отсюда следует выражение для вычисления радиуса сферы 
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0CR = . 

Значения Co для разных эллипсоидов указаны в табл. 3.6. 
Искажения на шаре можно оценить по формулам [1 с.77]: 

,1=m K+−== B
e

pn 2
2

cos
4

1  

Be 22 cos'859'=ω . 
 

Источники информации по Лекции 3 

1. Бугаевский Л. М. Математическая картография: Учебник для вузов направления «Геодезия», 
специальности «Картография». – М.: "Златоуст", 1998. -400 с. 

2. Гинзбург Г. А., Салманова Т. Д. Пособие по математической картографии. Труды ЦНИИГАиК. 
Вып. 160. М.: Недра, 1964.–456с. 

3. Изотов А.А. Земной эллипсоид Красовского и связанные с ним геодезические величины. Труды 
ЦНИИГАиК, выпуск 72. – М.: Геодезиздат. 1950. 

4. Каврайский В.В. Математическая картография. – Ленинград-Москва. Госкартотрест. 1934. -275 с. 
5. Комаровский Ю. А. Использование различных референц-эллипсоидов в судовождении [Элек-

тронный ресурс], (Дата обращения 24.05.2014). URL: http://sveos.msun.ru/edu/lit/kaf/tss/ell.pdf 
6. Морозов В. П. Курс сфероидической геодезии. Учебник для вузов. – М.: Недра, 1979. –260 с. 
7. Серапинас Б. Б. Геодезические основы карт. Учебное пособие. – М.: Изд-во Моск. ун-та, 2001. 

-132 с. 
8. Серапинас Б. Б. Практикум по геодезическим основам карт. Учебное пособие. М.: Географиче-

ский факультет МГУ. 2008. -146 с. 
9. Соловьев М.Д. Математическая картография. – М.: Недра. 1969. -287 с. 
10. Moritz H. GEODETIC REFERENCE SYSTEM 1980 [Электронный ресурс]. (Дата обращения 

22.05.2014). URL: http://www.gfy.ku.dk/~iag/handbook/geodeti.htm 
11. The available geographic coordinate systems. esriSRGeoCSType Constants. [Электронный ресурс] 

(Дата обращения 24.05.2014). 
URL: http://edndoc.esri.com/arcobjects/9.1/default.asp?URL=/arcobjects/9.1/componenthelp/esrigeome
try/esrisrgeocstype.htm 

Контрольные вопросы 

1. Перечислите используемые широты. Для чего они предназначены? Как они связаны вза-
имно? 

2. Наклонные и нормальные сечения. Взаимные нормальные сечения. Геодезическая ли-
ния. Радиусы эллипсоида. Как получены их формулы? Где их используют? 

3. Вычисление длин дуг параллелей. Вычисление длин дуг меридианов – численные спо-
собы, строгая формула и её вид. Вычисление геодезической широты по длине дуги ме-
ридиана. Вычисления площадей сфероидических трапеций и треугольников. 

4. Радиус всего земного шара. Как он получен? 
5. Отображение эллипсоида на сфере. Способы отображения и используемые при этом ра-
диусы шара. Искажения на шаре при разных отображениях. 


